File

Edit

View

Insert

Cell

Kernel

1

Navigate Widgets Help

Slide Type Slide ~

ICS 104 - Introduction to Programming in Python and C

1.1 Objects and Classes - Lab

2

.

Slide Type Slide ~

Lab Objectives

To understand the concepts of classes, objects and encapsulation
To implement instance variables, methods and constructors
To be able to design, implement and test your own classes

Slide Type Slide ~

Worked Example

Slide Type | Fragment v

Problem Statement: Your task is to write a class that simulates a bank account. Customers can deposit and withdraw funds. If sufficient funds are not
available for withdrawal, a $10 overdraft penalty is charged. At the end of the month, interest is added to the account. The interest rate can vary every
month.

Slide Type Slide ~

Step 1: Get an informal list of the responsibilities of your objects.

The following responsibilities are mentioned in the problem statement:
= Deposit funds.
= Withdraw funds.
= Add interest.

Slide Type Fragment v

There is a hidden responsibility as well. We need to be able to find out how much money is in the account.
= Get balance.

Slide Type Slide v

Step 2: Specify the public interface.
= To deposit or withdraw money, one needs to know the amount of the deposit or withdrawal
= def deposit (self, amount):
» def withdraw (self, amount):

Slide Type Fragment v Slide Type | Fragment v

To add interest, one needs to know the interest rate that is to be * Now we move to the constructor. The constructor should accept

applied: the initial balance of the account.

= def addInterest (self, rate) « It can be useful to allow for an initial zero balance using a
Finally, we have default argument.

= def getBalance (self) : = def __int__ (self, initialBalance = 0.0)

Slide Type Slide ~

+ Step 3: Document the public interface

A bank account has a balance that can be changed by deposits and withdrawals
¥

Class BankAccount
Constructs a bank account with a given balanee,
Gparan fnitialBalance the initial account balance (default = 0.0
.
def init__(self, initialBalance = 0.0)

Deposits moncy into this account.

Gparan amount the amount to deposit

N
def deposit(self, amount)

Makes a withdrawal from this account, or charges a penalty if

sufficient funds are vailable

¢ oparan amount the am the withdrawal
def withdraw(self, amount)

#8 Adds interest to this account.

Gparan rate the interest rate in percent

Slide Type Fragment v

#
def addInterest(self, rate) :

Gets the current balance of this account.
@return the current balance

#

def getBalance(self)

Slide Type Slide v

Step 4: Determine instance variables
We need to store the bank balance
» self._balance = initialBalance

Slide Type Fragment v

Do we need to store the interest rate?
= No — it varies every month, and is supplied as an argument to addInterest.
What about the withdrawal penalty?
= The problem description states that it is a fixed $10, so we need not store it.
If the penaity could vary over time, as is the case with most real bank accounts, we would need to store it somewhere (perhaps in a Bank object), but it is

Trusted

| Python 3 ©

In [3]:

In [2]:

not our job to model every aspect of the real world

Slide Type Slide v

1 ##
This module defines a class that models a bank ac
I #

A bank account has a balance that can be changed
#
class BankAccount
Constructs a bank account with a given balance
(@param initialBalance the initial account bala

10 #
11 def __init__(self, initialBalance = 0.0) :

12 self._balance = initialBalance

13

14 ## Deposits money into this account.

15 # (@param amount the amount to deposit

16 #

17 def deposit(self, amount) :

18 self._balance = self._balance + amount

19

20 ## Makes a withdrawal from this account, or charg
21 # sufficient funds are not available.

22 # @param amount the amount of the withdrawal
23 #

24 def withdraw(self, amount) :

25 PENALTY = 10.0

26 if amount > self. balance :

27 self. balance = self. balance - PENALTY
28 else :

29 self._balance = self._balance - amount

Adds interest to this account.
(@param rate the interest rate in percent

1

2

33 #

34 def addInterest(self, rate)

: amount = self._balance * rate / 100.0
36 self._balance = self._balance + amount

38 ## Gets the current balance of this account.
39 # (@return the current balance

40 #
41 def getBalance(self)
42 return self. balance
43
44
4 »

4 Exercises

Slide Type Fragment v

1 ##
2 # This program tests the BankAccount class.

#
4 # from bankaccount import BankAccount

6 harrysAccount = BankAccount(1000.0)

7 harrysAccount.deposit(500.0) # Balance is now $1500
harrysAccount.withdraw(2000.0) # Balance is now $14
9 harrysAccount.addInterest(1.0) # Balance is now $14
10 print("%.2f" % harrysAccount.getBalance())

11 print("Expected: 1504.90")

12

‘ »

1504.90
Expected: 1504.98

Slide Type Slide v

Slide Type | Slide ~

« Exercise # 1: Define a class Point that represents a pointin 2 — D plane. The point has x and y coordinates. Define the following:

+ Aconstructor to initialize the x, y coordinates

+ Amethod translate(self, dx,dy) to translate the point object dx , and dy units in x and y directions, respectively.
+ Amethod distanceTo (self, point2) to return the distance between the point referenced by self and point2

+ getX(self) to return the value of x coordinate
+ getY(self) toreturn the value of y coordinate

Test the above class by:

« Creating 2 point objects; one with (3,5) as x,y coordinates; the second with (-10,30) as x,y coordinates
« Move the first point 5.5 units in x direction and -12.5 units in v direction using translate method
= Find the distance between the 2 points in their current location using distanceTo method

A Sample output resulting from running the above test class is shown below

new coordinates of pointl= (8.5 , -7.5)

Coordinates of point 2 = (-10.0 , 30.9)

Distance between the 2 points = 41.82

1 # Exercise # 1 - Source Code
2 import math

3

4 class Point:

Slide Type | Fragment v

5 def __init_ (self,x=0.0 ,y=0.0):
6 self. X = x

7 self. Y =y

8

9 def translate(self, dx,dy):

10 self. X = self. X + dx

11 self._Y = self. Y + dy

12

13 def distanceTo (self, point2):
14 return math.sqrt(((peint2. _X-self. X)**2) + ((point2._Y-self. Y)**2))
15

16 def getX(self)

17 return self. X

18

19 def getY(self):

20 return self._Y

21

22 FirstPoint = Point(3,5)

23 SecondPoint = Point(-10,38)

24

25 FirstPoint.translate(5.5,-12.5)
26

27 print("new coordinates of pointl= ("+str(FirstPoint.getX())+" ,

28 print("Coordinates of point 2 = ("

+str(SecondPoint.getX())+" ,

"+str(FirstPoint.getY())+")")
"+str(SecondPoint.getY())+")")

29 print("Distance between the 2 points = %.2f" % FirstPoint.distanceTo(SecondPoint))

new coordinates of pointl= (8.5 , -7.5)
Coordinates of point 2 = (-10 , 30)
Distance between the 2 points = 41.82

Slide Type | Slide v

« Exercise # 2: Implement a class Portfolio. This class has two objects, checking and saving, of the type bankAccount that was developed in the worked

example. Initialize the 2 bank accounts with 0 initial balance.

.

.

25
26
27
28

38
39

40

Implement four methods
= def deposit (self, amount, account)
» def withdraw (self, amount, account)
= def transfer (self, amount, account)
= def getBalance (self, account)

Here the account stringis "S" or "C" for Saving and Checking, respectively. For the deposit or withdraw | it indicates which account is affected

Fora transfer itindicates the account from which the money is taken; the money is automatically transferred to the other account

To test your class

create one Portfolio object

deposit 10000 in its checking account

transfer 5000 from checking account to saving account
withdraw 2500 from checking account

display the balance of both accounts

Arun for the above test program will result in the following output

Saving balance = 5000.0
Checking balance = 2500.0

Exercise # 2 - Source Code
class Portfolio:
def __init_ (self):
self._saving = BankAccount()
self._checking = BankAccount()

def deposit(self, amount, account):
if account =="S":
self._saving.deposit(amount)

elif account == "C":
self._checking.deposit(amount)

def withdraw(self, amount, account):
if account == "S":
self._saving.withdraw(amount)
elif account == "C":
self._checking.withdraw(amount)

def transfer (self, amount, account):
if account == "S5":

self._saving.withdraw(amount)

self._checking.deposit(amount)

elif account == "C":
self._checking.withdraw(amount)
self._saving.deposit(amount)

def getBalance (self, account):
if account == "
return self

elif account
return self._checking.getBalance()

Sat

saving.getBalance()

T TP PP PP IP END OF DEF ======mmmcmmcc oo eeeeeeemceeceemeeeas

trial = Portfolio()

trial.deposit(10@00,"C")

trial.transfer(5000,"C")

trial.withdraw(2500,"C")

print("Saving Balance = ",trial.getBalance("S"))
print("Checking Balance = ",trial.getBalance("C"))

Saving Balance = 5000.0
Checking Balance = 2500.0

Slide Type Fragment v

Slide Type ~

